Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.237
1.
Sci Rep ; 14(1): 9550, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664461

DNA double-strand breaks (DSBs) activate DNA damage responses (DDRs) in both mitotic and meiotic cells. A single-stranded DNA (ssDNA) binding protein, Replication protein-A (RPA) binds to the ssDNA formed at DSBs to activate ATR/Mec1 kinase for the response. Meiotic DSBs induce homologous recombination monitored by a meiotic DDR called the recombination checkpoint that blocks the pachytene exit in meiotic prophase I. In this study, we further characterized the essential role of RPA in the maintenance of the recombination checkpoint during Saccharomyces cerevisiae meiosis. The depletion of an RPA subunit, Rfa1, in a recombination-defective dmc1 mutant, fully alleviates the pachytene arrest with the persistent unrepaired DSBs. RPA depletion decreases the activity of a meiosis-specific CHK2 homolog, Mek1 kinase, which in turn activates the Ndt80 transcriptional regulator for pachytene exit. These support the idea that RPA is a sensor of ssDNAs for the activation of meiotic DDR. Rfa1 depletion also accelerates the prophase I delay in the zip1 mutant defective in both chromosome synapsis and the recombination, consistent with the notion that the accumulation of ssDNAs rather than defective synapsis triggers prophase I delay in the zip1 mutant.


DNA Breaks, Double-Stranded , Meiosis , Replication Protein A , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factors , Replication Protein A/metabolism , Replication Protein A/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Recombination, Genetic , Homologous Recombination , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
2.
Cell Commun Signal ; 22(1): 240, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664711

BACKGROUND: The repair of peripheral nerve injury poses a clinical challenge, necessitating further investigation into novel therapeutic approaches. In recent years, bone marrow mesenchymal stromal cell (MSC)-derived mitochondrial transfer has emerged as a promising therapy for cellular injury, with reported applications in central nerve injury. However, its potential therapeutic effect on peripheral nerve injury remains unclear. METHODS: We established a mouse sciatic nerve crush injury model. Mitochondria extracted from MSCs were intraneurally injected into the injured sciatic nerves. Axonal regeneration was observed through whole-mount nerve imaging. The dorsal root ganglions (DRGs) corresponding to the injured nerve were harvested to test the gene expression, reactive oxygen species (ROS) levels, as well as the degree and location of DNA double strand breaks (DSBs). RESULTS: The in vivo experiments showed that the mitochondrial injection therapy effectively promoted axon regeneration in injured sciatic nerves. Four days after injection of fluorescently labeled mitochondria into the injured nerves, fluorescently labeled mitochondria were detected in the corresponding DRGs. RNA-seq and qPCR results showed that the mitochondrial injection therapy enhanced the expression of Atf3 and other regeneration-associated genes in DRG neurons. Knocking down of Atf3 in DRGs by siRNA could diminish the therapeutic effect of mitochondrial injection. Subsequent experiments showed that mitochondrial injection therapy could increase the levels of ROS and DSBs in injury-associated DRG neurons, with this increase being correlated with Atf3 expression. ChIP and Co-IP experiments revealed an elevation of DSB levels within the transcription initiation region of the Atf3 gene following mitochondrial injection therapy, while also demonstrating a spatial proximity between mitochondria-induced DSBs and CTCF binding sites. CONCLUSION: These findings suggest that MSC-derived mitochondria injected into the injured nerves can be retrogradely transferred to DRG neuron somas via axoplasmic transport, and increase the DSBs at the transcription initiation regions of the Atf3 gene through ROS accumulation, which rapidly release the CTCF-mediated topological constraints on chromatin interactions. This process may enhance spatial interactions between the Atf3 promoter and enhancer, ultimately promoting Atf3 expression. The up-regulation of Atf3 induced by mitochondria further promotes the expression of downstream regeneration-associated genes and facilitates axon regeneration.


Activating Transcription Factor 3 , Axons , DNA Breaks, Double-Stranded , Ganglia, Spinal , Mesenchymal Stem Cells , Mitochondria , Nerve Regeneration , Reactive Oxygen Species , Sciatic Nerve , Up-Regulation , Animals , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Reactive Oxygen Species/metabolism , Axons/metabolism , Nerve Regeneration/genetics , Up-Regulation/genetics , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Ganglia, Spinal/metabolism , Mice, Inbred C57BL , Male
3.
Mol Cell ; 84(8): 1460-1474.e6, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38640894

DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.


DNA Breaks, Double-Stranded , DNA-Directed DNA Polymerase , DNA-Directed DNA Polymerase/metabolism , DNA Replication , DNA, Single-Stranded/genetics , DNA Helicases/genetics , DNA End-Joining Repair
4.
Cells ; 13(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38667311

Actin is a protein of central importance to many cellular functions. Its localization and activity are regulated by interactions with a high number of actin-binding proteins. In a yeast two-hybrid (Y2H) screening system, snail family transcriptional repressor 2 (SNAI2 or slug) was identified as a yet unknown potential actin-binding protein. We validated this interaction using immunoprecipitation and analyzed the functional relation between slug and actin. Since both proteins have been reported to be involved in DNA double-strand break (DSB) repair, we focused on their interaction during this process after treatment with doxorubicin or UV irradiation. Confocal microscopy elicits that the overexpression of actin fused to an NLS stabilizes complexes of slug and γH2AX, an early marker of DNA damage repair.


Actins , Protein Binding , Snail Family Transcription Factors , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Actins/metabolism , Humans , Cell Nucleus/metabolism , Histones/metabolism , Two-Hybrid System Techniques , DNA Repair , Doxorubicin/pharmacology , DNA Breaks, Double-Stranded , Ultraviolet Rays , Animals
5.
Nat Commun ; 15(1): 2890, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570537

DNA double-strand breaks (DSBs) can be repaired by several pathways. In eukaryotes, DSB repair pathway choice occurs at the level of DNA end resection and is controlled by the cell cycle. Upon cell cycle-dependent activation, cyclin-dependent kinases (CDKs) phosphorylate resection proteins and thereby stimulate end resection and repair by homologous recombination (HR). However, inability of CDK phospho-mimetic mutants to bypass this cell cycle regulation, suggests that additional cell cycle regulators may be important. Here, we identify Dbf4-dependent kinase (DDK) as a second major cell cycle regulator of DNA end resection. Using inducible genetic and chemical inhibition of DDK in budding yeast and human cells, we show that end resection and HR require activation by DDK. Mechanistically, DDK phosphorylates at least two resection nucleases in budding yeast: the Mre11 activator Sae2, which promotes resection initiation, as well as the Dna2 nuclease, which promotes resection elongation. Notably, synthetic activation of DDK allows limited resection and HR in G1 cells, suggesting that DDK is a key component of DSB repair pathway selection.


DNA Breaks, Double-Stranded , Saccharomyces cerevisiae Proteins , Humans , Cell Cycle , Homologous Recombination , Cell Division , Endonucleases/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , DNA , DNA Repair , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
6.
Sci Rep ; 14(1): 8797, 2024 04 16.
Article En | MEDLINE | ID: mdl-38627415

Deletions of chromosome 1p (del(1p)) are a recurrent genomic aberration associated with poor outcome in Multiple myeloma (MM.) TRIM33, an E3 ligase and transcriptional co-repressor, is located within a commonly deleted region at 1p13.2. TRIM33 is reported to play a role in the regulation of mitosis and PARP-dependent DNA damage response (DDR), both of which are important for maintenance of genome stability. Here, we demonstrate that MM patients with loss of TRIM33 exhibit increased chromosomal instability and poor outcome. Through knockdown studies, we show that TRIM33 loss induces a DDR defect, leading to accumulation of DNA double strand breaks (DSBs) and slower DNA repair kinetics, along with reduced efficiency of non-homologous end joining (NHEJ). Furthermore, TRIM33 loss results in dysregulated ubiquitination of ALC1, an important regulator of response to PARP inhibition. We show that TRIM33 knockdown sensitizes MM cells to the PARP inhibitor Olaparib, and this is synergistic with the standard of care therapy bortezomib, even in co-culture with bone marrow stromal cells (BMSCs). These findings suggest that TRIM33 loss contributes to the pathogenesis of high-risk MM and that this may be therapeutically exploited through the use of PARP inhibitors.


Multiple Myeloma , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , DNA Repair , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , DNA Breaks, Double-Stranded , Genomic Instability , Transcription Factors
7.
Nat Commun ; 15(1): 2941, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580643

Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.


Cell Cycle Proteins , DNA Breaks, Double-Stranded , Mice , Animals , Cell Cycle Proteins/metabolism , DNA , Meiosis/genetics , Synaptonemal Complex/metabolism , Recombination, Genetic , Homologous Recombination
8.
Sci Rep ; 14(1): 5225, 2024 03 04.
Article En | MEDLINE | ID: mdl-38433244

Trypanosoma cruzi, the etiological agent of Chagas disease, invades many cell types affecting numerous host-signalling pathways. During the T. cruzi infection, we demonstrated modulations in the host RNA polymerase II activity with the downregulation of ribonucleoproteins affecting host transcription and splicing machinery. These alterations could be a result of the initial damage to the host DNA caused by the presence of the parasite, however, the mechanisms are not well understood. Herein, we examined whether infection by T. cruzi coincided with enhanced DNA damage in the host cell. We studied the engagement of the DNA damage response (DDR) pathways at the different time points (0-24 h post-infection, hpi) by T. cruzi in LLC-MK2 cells. In response to double-strand breaks (DSB), maximum phosphorylation of the histone variant H2AX is observed at 2hpi and promotes recruitment of the DDR p53-binding protein (53BP1). During T. cruzi infection, Ataxia-telangiectasia mutated protein (ATM) and DNA-PK protein kinases remained active in a time-dependent manner and played roles in regulating the host response to DSB. The host DNA lesions caused by the infection are likely orchestrated by the non-homologous end joining (NHEJ) pathway to maintain the host genome integrity.


Chagas Disease , DNA Breaks, Double-Stranded , Humans , Epithelial Cells , Chagas Disease/genetics , Phosphorylation , DNA Repair
9.
Nature ; 628(8007): 433-441, 2024 Apr.
Article En | MEDLINE | ID: mdl-38509368

An important advance in cancer therapy has been the development of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of homologous recombination (HR)-deficient cancers1-6. PARP inhibitors trap PARPs on DNA. The trapped PARPs are thought to block replisome progression, leading to formation of DNA double-strand breaks that require HR for repair7. Here we show that PARP1 functions together with TIMELESS and TIPIN to protect the replisome in early S phase from transcription-replication conflicts. Furthermore, the synthetic lethality of PARP inhibitors with HR deficiency is due to an inability to repair DNA damage caused by transcription-replication conflicts, rather than by trapped PARPs. Along these lines, inhibiting transcription elongation in early S phase rendered HR-deficient cells resistant to PARP inhibitors and depleting PARP1 by small-interfering RNA was synthetic lethal with HR deficiency. Thus, inhibiting PARP1 enzymatic activity may suffice for treatment efficacy in HR-deficient settings.


DNA Replication , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases , Transcription, Genetic , Humans , DNA Breaks, Double-Stranded , DNA Replication/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Recombinational DNA Repair , S Phase , Transcription, Genetic/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Poly (ADP-Ribose) Polymerase-1/metabolism
10.
Nature ; 628(8006): 145-153, 2024 Apr.
Article En | MEDLINE | ID: mdl-38538785

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


CA1 Region, Hippocampal , DNA Breaks, Double-Stranded , DNA Repair , Inflammation , Memory , Toll-Like Receptor 9 , Animals , Female , Male , Mice , Aging/genetics , Aging/pathology , CA1 Region, Hippocampal/physiology , Centrosome/metabolism , Cognitive Dysfunction/genetics , Conditioning, Classical , Extracellular Matrix/metabolism , Fear , Genomic Instability/genetics , Histones/metabolism , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Memory/physiology , Mental Disorders/genetics , Neurodegenerative Diseases/genetics , Neuroinflammatory Diseases/genetics , Neurons/metabolism , Neurons/pathology , Nuclear Envelope/pathology , Toll-Like Receptor 9/deficiency , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism
11.
Cell Rep ; 43(4): 114001, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38547127

In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the somatic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining (NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing. We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads to the accumulation of unrepaired DSBs. We uncoupled DNA cleavage and repair by co-expressing wild-type and mutant Ku70. High-throughput sequencing of the developing macronucleus genome in these conditions identifies the presence of extremities healed by de novo telomere addition and numerous translocations between IES-flanking sequences. Coupling the two steps of IES excision ensures that both extremities are held together throughout the process, suggesting that DSB repair proteins are essential for assembly of a synaptic precleavage complex.


DNA Cleavage , Paramecium , Paramecium/genetics , Paramecium/metabolism , DNA Breaks, Double-Stranded , Genome, Protozoan , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , DNA Repair , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , DNA End-Joining Repair
12.
Cell Rep ; 43(4): 114006, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38554279

Reprogramming to pluripotency is associated with DNA damage and requires the functions of the BRCA1 tumor suppressor. Here, we leverage separation-of-function mutations in BRCA1/2 as well as the physical and/or genetic interactions between BRCA1 and its associated repair proteins to ascertain the relevance of homology-directed repair (HDR), stalled fork protection (SFP), and replication gap suppression (RGS) in somatic cell reprogramming. Surprisingly, loss of SFP and RGS is inconsequential for the transition to pluripotency. In contrast, cells deficient in HDR, but proficient in SFP and RGS, reprogram with reduced efficiency. Conversely, the restoration of HDR function through inactivation of 53bp1 rescues reprogramming in Brca1-deficient cells, and 53bp1 loss leads to elevated HDR and enhanced reprogramming in mouse and human cells. These results demonstrate that somatic cell reprogramming is especially dependent on repair of replication-associated double-strand breaks (DSBs) by the HDR activity of BRCA1 and BRCA2 and can be improved in the absence of 53BP1.


BRCA1 Protein , Cellular Reprogramming , DNA Breaks, Double-Stranded , DNA Repair , DNA Replication , Tumor Suppressor p53-Binding Protein 1 , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Animals , Humans , Cellular Reprogramming/genetics , Mice , Recombinational DNA Repair
13.
Nucleic Acids Res ; 52(7): 3837-3855, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38452213

CCCTC-binding factor (CTCF) binding sites are hotspots of genome instability. Although many factors have been associated with CTCF binding site fragility, no study has integrated all fragility-related factors to understand the mechanism(s) of how they work together. Using an unbiased, genome-wide approach, we found that DNA double-strand breaks (DSBs) are enriched at strong, but not weak, CTCF binding sites in five human cell types. Energetically favorable alternative DNA secondary structures underlie strong CTCF binding sites. These structures coincided with the location of topoisomerase II (TOP2) cleavage complex, suggesting that DNA secondary structure acts as a recognition sequence for TOP2 binding and cleavage at CTCF binding sites. Furthermore, CTCF knockdown significantly increased DSBs at strong CTCF binding sites and at CTCF sites that are located at topologically associated domain (TAD) boundaries. TAD boundary-associated CTCF sites that lost CTCF upon knockdown displayed increased DSBs when compared to the gained sites, and those lost sites are overrepresented with G-quadruplexes, suggesting that the structures act as boundary insulators in the absence of CTCF, and contribute to increased DSBs. These results model how alternative DNA secondary structures facilitate recruitment of TOP2 to CTCF binding sites, providing mechanistic insight into DNA fragility at CTCF binding sites.


CCCTC-Binding Factor , DNA Breaks, Double-Stranded , DNA Topoisomerases, Type II , DNA , Nucleic Acid Conformation , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/chemistry , Humans , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Binding Sites , DNA/metabolism , DNA/chemistry , DNA/genetics , Protein Binding , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/chemistry , Cell Line
14.
Radiat Res ; 201(4): 275-286, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38453644

We present an extension of the Local Effect Model (LEM) to include time-dose relationships for predicting effects of protracted and split-dose ion irradiation at arbitrary LET. With this kinetic extension, the spatial and temporal induction and processing of DNA double strand breaks (DSB) in cellular nuclei can be simulated for a wide range of ion radiation qualities, doses and dose rates. The key concept of the extension is based on the joint spatial and temporal coexistence of initial DSB, leading to the formation of clustered DNA damage on the µm scale (as defined e.g., by the size scale of Mbp chromatin loops), which is considered to have an increased cellular lethality as compared to isolated, single DSB. By simulating the time dependent induction and repair of DSB and scoring of isolated and clustered DSB upon irradiation, the impact of dose rate and split dose on the cell survival probability can be computed. In a first part of this work, we systematically analyze the predicted impact of protraction in dependence of factors like dose, LET, ion species and radiosensitivity as characterized by the photon LQ-parameters. We establish links to common concepts that describe dose rate effects for low LET radiation. We also compare the model predictions to experimental data and find agreement with the general trends observed in the experiments. The relevant concepts of our approach are compared to other models suitable for predicting time effects. We investigate an apparent analogy between spatial and temporal concentration of radiation delivery, both leading to increased effectiveness, and discuss similarities and differences between the general dependencies of these clustering effects on their impacting factors. Finally, we conclude that the findings give additional support for the general concept of the LEM, i.e. the characterization of high LET radiation effects based on the distinction of just two classes of DSB (isolated DSB and clustered DSB).


DNA Breaks, Double-Stranded , Radiation, Ionizing , DNA Damage , Cell Nucleus , Cell Survival/radiation effects , DNA Repair
15.
Ecotoxicol Environ Saf ; 274: 116191, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38460408

The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 µg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.


Marine Toxins , Microcystins , Sirtuins , Spermatogonia , Animals , Male , Mice , Apoptosis , Cell Proliferation , DNA Breaks, Double-Stranded/drug effects , DNA Repair , Marine Toxins/metabolism , Marine Toxins/toxicity , Mice, Inbred ICR , Microcystins/metabolism , Microcystins/toxicity , Semen , Sirtuins/drug effects , Sirtuins/metabolism , Spermatogonia/drug effects , Spermatogonia/metabolism
16.
Cancer Lett ; 588: 216812, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38490327

The efficacy of temozolomide (TMZ) treatment in glioblastoma (GBM) is influenced by various mechanisms, mainly including the level of O6-methylguanine-DNA methyltransferase (MGMT) and the activity of DNA damage repair (DDR) pathways. In our previous study, we had proved that long non-coding RNA HOTAIR regulated the GBM progression and mediated DDR by interacting with EZH2, the catalytic subunit of PRC2. In this study, we developed a small-molecule inhibitor called EPIC-0628 that selectively disrupted the HOTAIR-EZH2 interaction and promoted ATF3 expression. The upregulation of ATF3 inhibited the recruitment of p300, p-p65, p-Stat3 and SP1 to the MGMT promoter. Hence, EPIC-0628 silenced MGMT expression. Besides, EPIC-0628 induced cell cycle arrest by increasing the expression of CDKN1A and impaired DNA double-strand break repair via suppressing the ATF3-p38-E2F1 pathway. Lastly, EPIC-0628 enhanced TMZ efficacy in GBM in vitro and vivo. Hence, this study provided evidence for the combination of epigenetic drugs EPIC-0628 with TMZ for GBM treatment through the above mechanisms.


Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Dacarbazine/pharmacology , Cell Line, Tumor , DNA Repair Enzymes/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , DNA Breaks, Double-Stranded , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Drug Resistance, Neoplasm , Enhancer of Zeste Homolog 2 Protein/genetics , Activating Transcription Factor 3/genetics
17.
Nature ; 628(8006): 212-220, 2024 Apr.
Article En | MEDLINE | ID: mdl-38509361

RAD51 is the central eukaryotic recombinase required for meiotic recombination and mitotic repair of double-strand DNA breaks (DSBs)1,2. However, the mechanism by which RAD51 functions at DSB sites in chromatin has remained elusive. Here we report the cryo-electron microscopy structures of human RAD51-nucleosome complexes, in which RAD51 forms ring and filament conformations. In the ring forms, the N-terminal lobe domains (NLDs) of RAD51 protomers are aligned on the outside of the RAD51 ring, and directly bind to the nucleosomal DNA. The nucleosomal linker DNA that contains the DSB site is recognized by the L1 and L2 loops-active centres that face the central hole of the RAD51 ring. In the filament form, the nucleosomal DNA is peeled by the RAD51 filament extension, and the NLDs of RAD51 protomers proximal to the nucleosome bind to the remaining nucleosomal DNA and histones. Mutations that affect nucleosome-binding residues of the RAD51 NLD decrease nucleosome binding, but barely affect DNA binding in vitro. Consistently, yeast Rad51 mutants with the corresponding mutations are substantially defective in DNA repair in vivo. These results reveal an unexpected function of the RAD51 NLD, and explain the mechanism by which RAD51 associates with nucleosomes, recognizes DSBs and forms the active filament in chromatin.


Cryoelectron Microscopy , DNA Breaks, Double-Stranded , Nucleosomes , Rad51 Recombinase , Saccharomyces cerevisiae Proteins , Humans , DNA/chemistry , DNA/metabolism , DNA/ultrastructure , DNA Repair/genetics , Nucleosomes/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Protein Subunits/chemistry , Protein Subunits/metabolism , Rad51 Recombinase/chemistry , Rad51 Recombinase/metabolism , Rad51 Recombinase/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Mutation , Protein Domains , Histones/chemistry , Histones/metabolism , Histones/ultrastructure , Protein Binding
18.
Biol Open ; 13(4)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38545958

The zebrafish (Danio rerio) is an important model organism for basic as well as applied bio-medical research. One main advantage is its genetic tractability, which was greatly enhanced by the introduction of the CRISPR/Cas method a decade ago. The generation of loss-of-function alleles via the production of small insertions or deletions in the coding sequences of genes with CRISPR/Cas systems is now routinely achieved with high efficiency. The method is based on the error prone repair of precisely targeted DNA double strand breaks by non-homologous end joining (NHEJ) in the cell nucleus. However, editing the genome with base pair precision, by homology-directed repair (HDR), is by far less efficient and therefore often requires large-scale screening of potential carriers by labour intensive genotyping. Here we confirm that the Cas9 protein variant SpRY, with relaxed PAM requirement, can be used to target some sites in the zebrafish genome. In addition, we demonstrate that the incorporation of an artificial nuclear localisation signal (aNLS) into the Cas9 protein variants not only enhances the efficiency of gene knockout but also the frequency of HDR, thereby facilitating the efficient modification of single base pairs in the genome. Our protocols provide a guide for a cost-effective generation of versatile and potent Cas9 protein variants and efficient gene editing in zebrafish.


CRISPR-Associated Protein 9 , Gene Editing , Animals , Gene Editing/methods , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Zebrafish/genetics , Zebrafish/metabolism , DNA Breaks, Double-Stranded
19.
J Biomed Sci ; 31(1): 32, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38532479

BACKGROUND: The field of genome editing has been revolutionized by the development of an easily programmable editing tool, the CRISPR-Cas9. Despite its promise, off-target activity of Cas9 posed a great disadvantage for genome editing purposes by causing DNA double strand breaks at off-target locations and causing unwanted editing outcomes. Furthermore, for gene integration applications, which introduce transgene sequences, integration of transgenes to off-target sites could be harmful, hard to detect, and reduce faithful genome editing efficiency. METHOD: Here we report the development of a multicolour fluorescence assay for studying CRISPR-Cas9-directed gene integration at an endogenous locus in human cell lines. We examine genetic integration of reporter genes in transiently transfected cells as well as puromycin-selected stable cell lines to determine the fidelity of multiple CRISPR-Cas9 strategies. RESULT: We found that there is a high occurrence of unwanted DNA integration which tarnished faithful knock-in efficiency. Integration outcomes are influenced by the type of DNA DSBs, donor design, the use of enhanced specificity Cas9 variants, with S-phase regulated Cas9 activity. Moreover, restricting Cas9 expression with a self-cleaving system greatly improves knock-in outcomes by substantially reducing the percentage of cells with unwanted DNA integration. CONCLUSION: Our results highlight the need for a more stringent assessment of CRISPR-Cas9-mediated knock-in outcomes, and the importance of careful strategy design to maximise efficient and faithful transgene integration.


CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , DNA Breaks, Double-Stranded , Transgenes , DNA
20.
Front Immunol ; 15: 1357101, 2024.
Article En | MEDLINE | ID: mdl-38449871

Radiation therapy (RT) not only can directly kill tumor cells by causing DNA double-strand break, but also exerts anti-tumor effects through modulating local and systemic immune responses. The immunomodulatory effects of RT are generally considered as a double-edged sword. On the one hand, RT effectively enhances the immunogenicity of tumor cells, triggers type I interferon response, induces immunogenic cell death to activate immune cell function, increases the release of proinflammatory factors, and reshapes the tumor immune microenvironment, thereby positively promoting anti-tumor immune responses. On the other hand, RT stimulates tumor cells to express immunosuppressive cytokines, upregulates the function of inhibitory immune cells, leads to lymphocytopenia and depletion of immune effector cells, and thus negatively suppresses immune responses. Nonetheless, it is notable that RT has promising abscopal effects and may achieve potent synergistic effects, especially when combined with immunotherapy in the daily clinical practice. This systematic review will provide a comprehensive profile of the latest research progress with respect to the immunomodulatory effects of RT, as well as the abscopal effect of radioimmunotherapy combinations, from the perspective of biological basis and clinical practice.


Immunotherapy , Radioimmunotherapy , Cytokines , DNA Breaks, Double-Stranded , Immunogenic Cell Death
...